فضائيات| مكتبة الدريم بوكس | مركز رفع الصور | فضائيات نيوز
تعليم الفوتوشوب





العودة   الإبداع الفضائي > > >

شعر - خواطر - قصائد - حكم - اقوال - بوستات اذاعة مدرسية، اليوم الوطني، اشعار، تغريدات، تويتات، كلمات، غناوي، شتاوي، قصة اطفال، حكاية , حكم، بوستات، ابيات شعر، قصص، حكايات

بحث عن الدالة الرياضية أو التابع الرياضي ، بحث علمى كامل جاهز عن الداله الرياضيه

 
LinkBack أدوات الموضوع
  #1  
مبدع الاقسام العامة

 

افتراضي بحث عن الدالة الرياضية أو التابع الرياضي ، بحث علمى كامل جاهز عن الداله الرياضيه


الدالة الرياضية أو التابع الرياضي كائن رياضي يمثل علاقة تربط بكل عنصر من مجموعة تدعى المنطلق عنصر واحد وواحد فقط من مجموعة تدعى المستقر . أو، باستعمال الصياغة الرياضية الرسمية
ينتج من هذا التعريف عدة أمور أساسية :
لكل تابع مجموعة منطلق (او نطاق Domain )غالباً ما تدعى .
لكل تابع مجموعة مستقر (او نطاق مرافق Codomain )غالباً ما تدعى .
لا يمكن لعنصر من مجموعة المنطلق ان يرتبط إلا بعنصر وحيد من مجموعة المستقر .
يمكن لعنصر من مجموعة المستقر أن يرتبط بعنصر وحيد أو أكثر من مجموعة المنطلق .
فاذا كان المنطلق (المجال) هو مجموعة القيم التي يمكن أن يأخذها المتغير المستقل x ، فإن المستقر أو النطاق المرافق (المجال المقابل) هو مجموعة القيم الممكنة لقيم الدالة .
المجال ( أو المدى ) Range : هو مجموعة القيم الفعلية للدالة f .
و يجب عدم الخلط بين المجال و المستقر حيث يمكن للدالة ألا تغطي جميع قيم المستقر فيكون المجال مجرد مجموعة جزئية من المستقر .

أمثلة
لنأخذ الدالة :
أي أن
بأخد x = 2 نكتب f(2) = 4، هنا بالتعرف أعلاه اختصرنا الدالة التربيعية بالحرف . عندئذ نجد أن العنصرx = 2 من المنطلق يرتبط بالعنصر y = 4 من المستقر فقط. العنصر x = − 2 من المنطلق (او المجال) يرتبط بالعنصر y = 4 فقط من المستقر، فإذا من الممكن للعنصر y = 4 من المستقر أن يرتبط بعنصرين x = 2 وx = − 2 من المستقر في حين أن أي عنصر من المنطلق يرتبط بعنصر واحد فقط من المستقر. هذا أمر جوهري في تحديد كون أي علاقة بين مجموعتين تشكل دالة رياضية .
بالمقابل

ليست دالة، لأنها تربط اي مدخل x بمخرجين. مثل، الجذر التربيعي للعدد 9 قد يحتمل قيمتين هما 3 و -3. لهذا، اذا اردنا ان نجعل الجذر التربيعي دالةً فيجب ان نحدد اي جذر نختار، السالب ام الموجب. التعريف
،
يعطي لأي مدخل غير سالب مخرج واحد فقط هو الجذر التربيعي الموجب.

مجال الدالة
إن ربط أي عنصر من عناصر مجموعة ما مثل س ( تسمى المجال أو النطاق أو المنطلق)، بعنصر واحد فقط من عناصر مجموعة أخرى مثل ص (تسمى المجال المقابل أو المستقر أو النطاق المرافق)، هو أقتران من المجموعة س إلى المجموعة ص، والمقصود رياضيا بالأقتران هو (دالة أو تابع أو تطبيق)، وللأقتران أو الدالة ثلاث مكونات: مجال( منطلق)، ومجال مقابل (مستقر)، وقاعدة يتم بواسطتها ربط أي عنصر من عناصر المجال (المنطلق) بعنصر واحد فقط من عناصر المجال المقابل (المستقر). والمجموعة الجزئية من المجال المقابل التي تتكون من جميع صور عناصر المجال تسمى مجال الدالة أو (مدى الأقتران). أي أن مجال الدالة أو مدى الأقتران هو مجموعة جزئية من المجال المقابل للأقتران. فمثلا : ص = د( س ) = 7س + 9.
وهناك أنواع متباينة من الدوال، كالدالة المركبة (إقتران مركب)، والدالة التحليلية ( أقتران تحليلي) ، والدالة الثابتة (أقتران ثابت)، والدالة المستمرة (أقتران متصل)، والدالة المتناقضة (أقتران متناقض)، والدالة الضمنية(الأقتران الضمني)، والدالة الأسية (أقتران أسي).









من مواضيعى في فضائيات تردد قناة بداية الجديد على النايل سات وعرب سات زد رصيدك 7
احدث خلفيات للتايم لاين طيارات حيوانات طبيعة 2018 - مجموعة جديدة لكفرات تايم لاين حب
برج الحوت اليوم 20-4-2012 ،ابراج اليوم الجمعة ،الابراج 2012 ، توقعات الابراج 2012
تفسير حلم الشرب لإبن شاهين , رؤيا الشرب للنابلسى , تفسير رؤيا الشرب لإبن سيرين
رمزيات بي بي منوعه 2014,رمزيات بلاك بيري منوعه 2014,رمزيات بي بي روعه 2014
صور النجمة لطيفة فى حفل إفتتاح مهرجان الكاثوليكي للسينما 2014
القذافي مسيح إفريقيا , شاهد القذافي في عيون أفارقة
معلومات عن محمد بن عبد السلام بن يوسف بن كثير الهوارى , ابن عبد السلام الهواري

بحث عن الدالة الرياضية أو التابع الرياضي ، بحث علمى كامل جاهز عن الداله الرياضيه


أدوات الموضوع



الساعة معتمدة بتوقيت جرينتش +3 . الساعة الآن » 09:16.
Powered by vBulletin
.Copyright ©2000 - 2017, Jelsoft Enterprises Ltd

تابعنا على الفيس بوك جديد مواضيع المنتدى تابعنا على تويتر Google+‎
أضغط اعجبنى ليصلك جديدنا على الفيس بوك